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A mathematical model has been developed and numerical calculations of heat transfer have been performed
for a horizontal heated cylindrical base with transverse sectional finning under the conditions of free-convec-
tive flow of an external heat-transfer agent. The effect of concurrent flows from lower fins on the heat trans-
fer of upper fins has been studied. Local thermal characteristics of individual sectional fins on different
portions of the cylindrical base and total heat fluxes removed by a finned surface have been determined. Re-
sults of the calculation have been compared to experimental data and satisfactory agreement of them has
been obtained.

Heat exchangers made of finned tubes have found wide application in designing different heat-exchange
equipment. In designing it, transverse annular or helical finning is used to enhance heat transfer. Recent investigations
have shown that the efficiency of such equipment can be improved by using discontinuous finning, which is attained
by dissecting either individual annular fins or a metal strip used for creation of helical transverse finning. The technol-
ogy of production of tubes with transverse sectional finning has been mastered well, and surfaces with such finning
have passed evaluation tests in designing a number of heat exchangers. It has been shown [1, 2] that surfaces with
sectional finning offer some advantages over similar structures with continuous transverse finning. In flow of the ex-
ternal heat-transfer agent past sectional fins, we have the separation of a boundary layer on the initial portions of its
formation where the local values of the heat-transfer coefficients are high. Tubes with sectional finning are used in
heat exchangers with both forced and free-convective modes of flow of the external heat-transfer agent. At the same
time, the conditions of heat transfer of sectional finning on a cylindrical base have not been studied adequately. Meth-
ods of thermal calculation of such surfaces are also poorly developed. Below, we give thermal calculation of a cylin-
der with transverse discrete finning under the conditions of natural convection.

We consider a horizontal cylindrical heated surface with transverse sectional finning (Fig. 1) which is cooled
in free-convective flow of the external heat-transfer agent. Individual fins of the surface considered have small cross-
sectional dimensions which are much smaller than the fin height (h >> l). Depending on the position of the individual
fins on the surface of the cylindrical base, they are arranged at a certain angle γ with the vertical, and the angular
distance between neighboring fins is ∆ϕ (Fig. 2). The boundary layer on the surface of small fins is laminar, and it is
formed in different ways depending on the angle of inclination of the fins. In particular, on the lower fin (γ = 180o)
the boundary layer is formed near the end face and increases as the cylinder base is approached. For other fins ar-
ranged on the side surfaces of the cylindrical base (0 < γ < 180o), the boundary layer is formed near the lower edge of
the end face and increases along the surface at an angle γ with the coordinate 0z and then separates at the upper edge
of the side or upper end face of the fin. For annular or helical sectional finning with a small interfin distance, almost
all the fins, except for those lying on the lower portion of the base, are in the concurrent flow of a hot heat-transfer
agent which is formed in separation of the boundary layer from the lower-lying fins. We assume that, due to a small
vertical interfin distance, concurrent flows for neighboring rows do not converge and are formed independently of one
another.

In the general case, heat transfer in an individual fin is described by the equation
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Assuming that the heat loss from the end faces is insufficient and allowing for the symmetry of the system
relative to the 0y axis, we write the boundary conditions for the individual fin:
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For thermally thin fins (Bi = αδfin
 ⁄ λfin << 1) with small cross-sectional dimensions the fin temperature

changes slightly along the coordinates 0x and 0y and it can be averaged over the thickness and width of the fin; as a
result, with the aid of dimensionless variables, Eq. (1) and boundary conditions (2) are reduced to the form
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Fig. 1. Cylindrical surface with sectional finning.

Fig. 2. Scheme of calculation of concurrent flows for the finned surface.
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is the fin temperature averaged over the thickness and width, q(r, γ, T~) is the density of the heat flux removed from
the fin surface, and r(x, z) is the length of formation of the boundary layer on the fin surface.

Since the angle of inclination for the lower fin (fin 1 in Fig. 1) differs little from γ C 180o and heat transfer
is determined only by natural convection, the density of the heat flux removed from its surface at an arbitrary tem-
perature distribution is determined by the general functional dependence [3, 4]
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where ∆T = T
~

 − Tg∞ is the temperature head on the fin surface. According to [5], the local heat-transfer coefficient on
an isothermal surface is

αn
∗
 (z, ∆T) = c (Pr) λg (Grz Pr)1

 ⁄ 4 ⁄ z , (6)

where the parameter c(Pr) depends on the Prandtl number and can be approximated by the expression
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Relation (5) in dimensionless variables acquires the form
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For fin 2 (Fig. 1), the main mechanism of heat transfer on its surface is natural convection of the external
heat-transfer agent. Allowing for the small cross-sectional dimensions of fins and the small region of formation of the
boundary layer, we assume the heat-transfer coefficient for the free-convective component of the heat flux to be virtu-
ally independent of a change in the temperature head:

α
__

n = 
1

R − R1
  ∫ 
R1

R

 αn
∗
 (γ, R′, θ) dR

′
 , (8)

where αn
∗  is determined by expression (6) in which the variable r is used instead of z (Fig. 3). The density of the heat

flux removed from the surface of fin 2 is

q~ (Z, θ) = α
__

n (Z, θ) θ . (9)

The fins that lie above fin 2 (fins 3, 4, etc., as is shown in Figs. 1 and 2) are fully or partially in the concurrent
flows from the fins lying below. On the surface of these fins, there is mixed convective flow and the density of the
removed heat flux is determined from the formula

q~ (Z, θ) = αm (Z, θ) (θ − θg) , (10)

where θg = (Tg − Tg∞)/(T0 − Tg∞).
For the heat-transfer coefficient in mixed convection the relationship

αm = αn [1 + (αf
 ⁄ αn)

3
]
1 ⁄ 3 (11)
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holds [6]; this relationship is true for both the local and surface-averaged quantities. The value of αn in (11) is found
from formulas (6) and (8), where Tg is used instead of Tg∞. The forced-convective component of the local heat-trans-
fer coefficient αf is calculated from the dimensionless expression [7]

αf = 0.33λg Pr
0.33

 Rer
1 ⁄ 2 ⁄ r , (12)

and its mean value is found after integration of the local values along the length of the portion of boundary-layer for-
mation r and is equal to α

__
f = 2αf.

A part of the surface of fin 3 is in the zone of concurrent flow from fin 2, and the free-convective mode is
observed on the remaining part (see Figs. 1 and 2). A certain region of the surface of fin 4 near the base is in the
concurrent flow from two heat sources (fins 2 and 3); then a part of the surface lies in the zone of the concurrent
flow from fin 3, and natural-convective heat transfer occurs on the remaining part of the surface. The above regularity

holds for fins lying in the lower part of the cylindrical base and whose angle of inclination is within 90o ≤ γ < 180o.

It is assumed that fins can be considered as linear heat sources with an angle of inclination γ with the vertical, and

the computation technique of [8] is used. The length of portions with mixed (0 ≤ z < zb) and free-convective

(zb ≤ z ≤ h) flows for the ith fin is found from the position of the crests of the closest lower (i − 1)th fin relative to

the ith fin. The coordinate of the separating boundary of the zones zb is determined on the basis of the theorem of

sines, zb = 
(d ⁄ 2 + h) sin (180o − γ − ∆ϕ)

sin γ
 − 

d
2

. In calculating heat transfer for fins in the region 0 ≤ z < zb, the density of

the removed heat flux is determined from formula (10) (in this case, use is made of the averaged values of the heat-
transfer coefficients) and in the region of free-convective heat transfer zb ≤ z ≤ h, q~(Z, θ) is calculated from formula (9).

The fins lying in the upper part of the cylindrical base (0 ≤ γ < 90o) are entirely, in practice, under the condi-
tions of mixed flow, except for a small portion of the near-root region where concurrent flow is absent. The length of

this portion is 0 ≤ z < zb and the coordinate of separation of portions with different flow modes zb is determined by the

position of the base of the nearest lower fin and is found using the theorem of sines, zb = 
d sin (180o − γ − ∆ϕ)

2 sin γ
 − 

d
2

.

The technique of calculation of q~(Z, θ) on the portions with different conditions of flow modes remains the same. We
note that the model includes a certain idealization which does not correspond to the actual conditions of streamlining,
viz., finite dimensions of fins are not taken into account in formation of concurrent flows and the effect of the bound-
ary layer on the surface of the cylinder is neglected. By virtue of such assumptions, concurrent flow past the near-end
region of a fin and flow in the boundary layer on the cylinder base are not calculated quite accurately.

Fig. 3. Computation scheme for determining the length of formation of the
boundary layer on an inclined fin: a) 0 < γ < 90o; b) 90o < γ < 180o.
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To calculate q~(Z, θ) from formula (10), in the mixed-flow region we must find the component α
__

f, the calcu-
lation of which necessitates determination of the velocity and the temperature in the concurrent flow formed from the
lower-lying fins. According to the technique of [8], the system of fins which form the concurrent flow near the ith fin
(reckoning from the lower fin with an angle of inclination of γ = 180o, as shown in Fig. 2) can be treated as an ef-
fective linear heat source. The velocities of flow and the temperature on the axis line and also the boundary-layer
thickness for the concurrent flow from the effective source are found from the expressions [8, 9]

 Uxi = 




2gβ (Q1 + Q2 + ... + Qi)
cpI




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
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

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16µcpIν2
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



1 ⁄ 5

 ηe (x − xk)
2 ⁄ 5 ,   i = 1, 2, 3, ... , (15)

where fn and η are the self-similar variables and I and ηe are the known calculated parameters for the concurrent flow
from the linear heat source [9]. If the concurrent flow is formed by k fins (their number is determined by the inter-
section of the vertical dropped from the running point of the ith fin and the lower-lying fins, as shown in Fig. 2), then
the distance x is reckoned from the (i − k)th fin and xk is the coordinate of displacement of the effective total heat
source relative to the lower fin. In accordance with the approach of [8], xk is found from the expression

xk =  ∑ 

j=1

k

 ∆xj − 



1 + 

Qk

Q1 + Q2 + ... + Qk−1



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

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 ∆xj − xk−1







 ,   j = 1, 2, ..., k , (16)

where k is the number of fins in the effective heat source. The distance along the vertical between the jth and the
(j − 1)th fins ∆xj is determined using the theorem of sines, ∆xj = z sin ∆ϕ ⁄ sin (180o − γ − ∆ϕ), where z is the running
coordinate on the axis of the ith fin. The initial coordinate x1 is assumed to be zero.

The power of an individual heat source is calculated through integration of the removed heat flux on the por-
tion of formation of the boundary layer:

Qi = 2 ∫ 
r1

r

αi (r
′, γ) (T~i (r

′, γ) − Tgi) dr′ ,   i = 1, 2, 3, ... , (17)

where αi(r′, γ) and T
~

i(r′, γ) are the local values of the heat-transfer coefficient and the temperature on the surface of
the ith fin for the running variable r′. In this case, the quantity r depends on the running coordinate z and the angle
of inclination of the fin γ and acquires the following values (as is shown in Fig. 3).

For the case where fins lie in the sector ∆γ < γ < 90o, where ∆γ = arctan (l/h), we have r1 = 0, r = z ⁄ cos γ,
T
~(r′, γ) = T

~(z′), and α(r′, γ) = α(z′ ⁄ cos γ) on the portion of the fin 0 ≤ z < l cot γ and we find r1 = (z − l cot γ) ⁄ cos γ,
r = z ⁄ cos γ, T

~(r′, γ) = T
~(z′), and α(r′, γ) = α[(z′ − z + l cot γ) ⁄ cos γ] in the region l cot γ ≤ z ≤ h.

For the fins with an angle of γ = 90o we can write r1 = 0, r = l, T
~(r, γ) = T(z), and α(r′, γ) = α(z).

For the case where fins lie in the sector 90o < γ < 180o − ∆γ, on the portion of the fin 0 ≤ z < h − l cot γ we
have

r1 = z ⁄ cos (180 − γ) ,   r = 
z + l ctan (180 − γ)

cos (180 − γ)
 ,   T

~
 (r′, γ) = T

~
 (z′) ,   α (r′, γ) = α 





z + l ctan (180 − γ) − z′

cos (180 − γ)




 ,
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and in the region h − l cot γ ≤ z ≤ h we find

r1 = z,   r = h,   T
~

 (r′, γ) = T
~(z′),   α (r′, γ) = α 





h − z′

cos (180 − γ)




 .

Within the range of variation of the angle of inclination of fins 0 ≤ γ ≤ ∆γ and 180o − ∆γ ≤ γ ≤ 180o, the vari-
able r can be taken independent of γ, setting, respectively, r1 = 0, r = z and r1 = z, r = h.

The entire upper fin lies in the concurrent flow arising in separation of the near-wall flow, which is formed
on the cylindrical base due to the interaction of the boundary layer and the concurrent flows attached to its surface,
from fins either totally or partially lying in the zone which is bounded by two vertical lines dropped from the points
(for which γ = 90o) on the base surface (see the dot-dash line in Fig. 2). The value of the coordinate of the point of
intersection of the vertical and the ith fin is zv,i = d/[2 sin (180o − γi)]. In order to calculate the velocity and the tem-
perature in the concurrent flow above the cylindrical base, according to [8] we must find the value of the power of
the effective heat source, which is calculated through summation of the powers of individual heat sources:

Qs = Qc + 2  ∑ 

i=1

n

 Q
__

i , (18)

where i is the number of a fin and n is the number of fins lying in half the indicated zone. The power of individual
sources in the zone under consideration is calculated through integration of the local heat fluxes removed from the cor-
responding portions of the fin surface:

Q
__

i = 2  ∫ 
0

zν,i

 dz  ∫ 
r1

r

 αi (r
′, γ) (T

~
i (r

′, γ) − Tgi) dr′ ,   i = 1, 2, ..., n , (19)

(for fins lying totally in the assigned zone we have zv,i = h and for fins partially entering the assigned region the val-
ues of zv,i are found above).

The power of the cylindrical base Qc is

Qc = πdα
__

n (T0 − Tg∞) , (20)

where α
__

n is the averaged coefficient of heat transfer on the surface of the cylindrical base, which will be determined
below.

The coordinate of the position of the effective heat source relative to the base of the upper fin xs can be
found from the condition of equality of the thicknesses of the boundary layer formed on the cylindrical base at the
point of separation and the boundary layer of the concurrent flow

δgs (xs) = δg.layer , (21)

where the thickness of the boundary layer of the concurrent flow δgs is determined from formula (15) where the value
of the power of the effective source is determined by expression (18) and xk is taken to be zero. The thickness of the
boundary layer on the cylinder surface at the point of separation δg.layer is determined from the known results of the
calculation of heat transfer on the cylinder surface in free convection [5] and the relation between the boundary-layer
thickness and the local coefficient of heat transfer δg.layer(x) = λg

 ⁄ αn(x). For a horizontal cylinder, the local coefficient
of heat transfer is determined by the dependence [5]

αn (x) = λg f (x ⁄ d, Pr) Grd
1 ⁄ 4 ⁄ d , (22)

which upon averaging over the surface acquires the form
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α
__

n = c (Pr) λg Grd
1 ⁄ 4 ⁄ d . (23)

The coefficient c(Pr) in (23) depends on the Prandtl number and can be found by both computation and experiment
[5].

With account for (22), the thickness of the boundary layer on the cylinder surface is

δg.layer (x) = d Grd
−1 ⁄ 4 ⁄ f (x ⁄ d, Pr) , (24)

where x = d(π − γ)/2 is the length of formation of the boundary layer on the cylinder surface (the angle γ is expressed
in radians) and the function f(x/d, Pr) is determined in solving the equation of transfer for the boundary layer on the
cylinder surface. As an example, we give the expression for the function f(x/d, Pr) obtained in [10] for the particular
case T  = const and Pr = 0.7: f(x/d, Pr) = 0.37023 − 0.06436(x ⁄ d)2 − 0.00144(x ⁄ d)4. From equality (21), with relations
(15) and (24) at the point of separation of the boundary layer x = dπ ⁄ 2 in mind, we find the coordinate of the posi-
tion of the  effective heat source:

xs = d 




16µcpIν2

gβQs





−2

 ηe
−5 ⁄ 2 Grd

−1 ⁄ 4 ⁄ f (π, Pr) . (25)

We can note a certain difference between the thicknesses of the boundary layer for the cylinder (used in calculations)
and of the near-wall flow developing on the cylinder surface in interaction between the boundary layer and the at-
tached concurrent flows from the fins lying under the cylinder base. However, determination of this quantity is a sepa-
rate problem and is beyond the scope of the present study.

Thus, calculation for the upper fin is carried out in the following order. Having determined the powers of in-
dividual heat sources from formulas (19) and (20), the power of the effective heat source from formula (18), and its
position from relation (25), we can calculate the velocity and temperature of the concurrent flow from formulas (13)
and (14), where xk = xs. Then we determine the local values of the coefficients of heat transfer for free and forced
convection from formulas (6) and (12) and the total value of this coefficient from relation (11) and find the local re-
moved heat flux according to (10).

In numerical calculation of the equation of transfer (3) with boundary conditions (4) for each fin we used the
Runge–Kutta scheme and calculated the integrals by the method of trapezoids [11]. Since in relation (5) the tempera-
ture head ∆T = T

~
 − Tg∞ over the height of fins is a priori unknown, we organized the iteration procedure of calcula-

tions. In calculations, we set ∆T = T0 − Tg∞ in the first iteration with further verification of ∆T in the following
iterations. During the calculation, we determined the power of the heat source represented by an individual fin and
also the velocities and temperatures of the heat-transfer agent in concurrent flows and the coordinates of the position
of the effective heat sources. Calculation was made successively from fin to fin starting with the lower one. The
boundary of separation portions with different conditions of heat transfer was determined for each fin and correspond-
ing relations were used to calculate the removed heat fluxes on each portion. We found the local and integral thermal
characteristics for each fin and the total removed heat flux for the entire system.

Some results of numerical calculations for a heated cylinder with air-cooled steel sectional finning (λfin = 40
W/(m2⋅K)) are presented in Figs. 4–6. It was assumed that with the outside diameter of the cylindrical base d = 13
mm fins have dimensions h × l × δfin = 22 × 3 × 0.5 mm and the interfin space is s = 3 mm. Figure 4 gives the de-
pendence of the Nusselt number Nud averaged over the entire surface on the Rayleigh number Rad, which is obtained
from calculations and experiments [12]. Comparison of the calculated and experimental data points to a certain under-
statement of the calculated values with an error of 14–23%.

Figure 5 shows the distributions of the relative coefficients of heat transfer α ⁄ α
__

n
∗  over the height of fins with

an angle of inclination of γ = 0, 45, 90, 135, and 180o, which are obtained by calculations at T0 = 100oC and Tg∞ =

20oC. The mean value of the heat-transfer coefficient for an isothermal fin α
__

n
∗  obtained through averaging of its local

values (6) over the fin height at ∆T = T0 − Tg∞ is α
__

n
∗  = 

3
4

 c(Pr)λg(Grh Pr)1
 ⁄ 4 ⁄ h. The same figure also gives the rela-
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tive coefficients of heat transfer αn
∗  ⁄ α
__

n
∗  for individual isothermal fins with a surface temperature of T

~
 = T0, which

have the same position in the surrounding medium in free convection (without regard for concurrent flows from lower-
lying sources). As follows from Fig. 5, the distributions of the heat-transfer coefficients over the height of fins (except
for the upper and lower ones) have a stepwise character. This is caused by the different number of lower-lying heat
sources and stepwise changes of the velocity and the temperature in concurrent flows past different portions over the
fin height. The distribution of the heat-transfer coefficients over the height of the lower and upper fins has a mono-
tonic character. Comparison of the distributions obtained for the finned system under consideration with similar distri-
butions over the height of individual isothermal fins having the same angle of inclination indicates that they have
lower values for sectional finning. This is due to the substantial heating of the heat-transfer agent in concurrent flows
and, consequently, the decrease in the free-convective component of the heat-transfer coefficient, which is predominant
for these fins. The exception is the upper fin, for which the free-convective component is larger. At the same time, for
the upper fin the temperature head on the surface is insignificant due to the substantial heating of the heat-transfer
agent in the concurrent flow, and the local values of the heat fluxes removed from its surface are low.

Fig. 4. Dependence of the averaged Nusselt number Nud on the Rayleigh
number Rad: 1) calculation; 2) experiment [12].

Fig. 5. Distributions of the coefficients of heat transfer over the height of fins
[a) calculation of α ⁄ α

__
n
∗ ;  b) calculation of αn

∗  ⁄ α
__

n
∗ ]: 1) fin with an angle of in-

clination of γ = 180o; 2) 135; 3) 90; 4) 45; 5) 0.

Fig. 6. Temperature distributions θ over the height of fins (a, calculation; b,
experiment [12]): 1) fin with an angle of inclination of γ = 180o; 2) 135; 3)
90; 4) 45; 5) 0.
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Figure 6 gives the calculated and experimental [12] temperature distributions over the height of fins arranged
at different angles of inclination. An analysis of the curves obtained indicates a substantial decrease in the temperature
head for the fins lying in the lower part of the cylindrical base 90o ≤ γ ≤ 180o. We have a somewhat smaller decrease
in the head for the fins with angles of inclination of γ = 90o and γ = 135o, and for the upper fin (γ = 0) the change
in the temperatures over the height is insignificant. Comparison of the calculated distributions obtained and the experi-
mental data points to their good agreement.

NOTATION

x, y, z, running coordinates; T, temperature; q, density of the removed heat flux; d, diameter of the cylindrical
base; h and l, height and width of fins; s, interfin space; U, velocity of flow; g, gravitational acceleration; Q, total heat
flux or power of the heat source; γ, angle of inclination of the axial line of the fin relative to the vertical; ∆ϕ, angular
distance between the fins; δ, thickness; ρ, density of the external heat-transfer agent; λ, thermal conductivity; α, local
coefficient of heat transfer; µ, kinematic viscosity; ν, dynamic viscosity; β, coefficient of volumetric expansion; cp, spe-
cific heat capacity; f and η, self-similar variables for concurrent flow; Z = z/h, R = r/h; θ = (T − Tg∞)/(T0 − Tg∞), di-
mensionless temperature; Pr, Prandtl number; Bi = αδ ⁄ λ, Biot number; Grx = gβ(T − Tg) x

3 ⁄ ν2, Grashof number; Rex
= Ux ⁄ ν, Reynolds number; Rax = GrxPr, Rayleigh number; I, calculated parameter of concurrent flow. Sub- and super-
scripts: *, isothermal surface; fin, fin; n, natural convection; f, forced convection; m, mixed convection; 0, fin base; ∞,
surrounding medium; g, external heat-transfer agent; b, boundary separating portions with different conditions of flow;
s, effective (total) heat source; e, edge of the boundary layer; c, cylindrical surface; layer, boundary layer; d, diameter;
v, points of intersection of fins and the vertical; ′, running value of the variable in the integral.
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